Graph Theory Homework 2 Redone

Joshua Ruiter

February 1, 2018

Proposition 0.1 (Exercise 1). Let G = (V, E) be a graph with non-adjacent vertices a, b. The minimum number of vertices $S \subset V \setminus \{a, b\}$ is equal to the maximum number of independent ab-paths.

Proof. We transform G into a network \tilde{G} and apply the Max Flow/Min Cut theorem. Locally, except at a and b, for each edge xy in G, we replace each each end vertex x by two vertices x_{-}, x_{+} , and add a directed edge $x_{-} \to x_{+}$. For every edge incident to x, \tilde{G} has a directed edge $x_{+} \to y_{-}$ and another directed edge $y_{+} \to y_{-}$.

At a, we just turn edges $ax \in E$ into directed edges $a \to x_-$, and at b, we turn edges yb into directed edges $y_+ \to b$. Now we impose a capacity of one on each directed edge of \tilde{G} .

First, we claim that maximal flows in G correspond to maximal collections of independent ab-paths in G, with the volume equal to the number of independent paths. If we have a flow f on \tilde{G} , then we turn it into a collection of edges in G by including each edge xy where $f(x_+, y_-) = 1$ or $f(y_+, x_-) = 1$. Since flow in and out of a vertex is equal, such a collection of edges can be partitioned into a collection of paths a to b. By construction of \tilde{G} , these paths are vertex-independent, since using a vertex $x \in G$ corresponds to using the edge $x_- \to x_+$. Since this edge can be used only once, x can be used only once by the associated collection of paths. Finally, the volume is equal to the number of edges f takes value 1 on outgoing from a, which is also equal to the number of distinct paths.

Now, we claim that minimum capacity cuts in G correspond to minimum ab vertex-cuts in G. An ab vertex-cut $S \subset V \setminus \{a, b\}$ in G can be transformed into a cut in \widetilde{G} by cutting along each $x_- \to x_+$ for $x \in S$. Then clearly a minimal vertex-cut S corresponds to a minimal capacity cut in \widetilde{G} , and the capacity of the cut is the number of vertices in the vertex cutset.

By Max Flow/Min Cut, the maximal volume of a flow in G is equal to the minimal capacity cut, so the number of maximal indepdent *ab*-paths in G is equal to the minimum number of *ab* cut vertices.